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Scattering of light nuclei
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Abstract. The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions
among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which
require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary
theoretical as well as computational challenge for ab initio approaches. We present a new ab initio many-body ap-
proach which derives from the combination of the ab initio no-core shell model with the resonating-group method
[4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic
and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both
bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on s-
and light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment
of more complex reactions.

1 Introduction

To understand the evolution of the Universe, we need to
understand nuclear reactions. Indeed, low-energy fusion
reactions represent the primary energy-generation mech-
anism in stars, help determining the course of stellar evo-
lution, and are crucial in the formation of the chemical ele-
ments. In addition, much of what we know about neutrino
oscillations is established from neutrino emerging from the
Sun following the β-decay of reactions products, particu-
larly 8B. The light-ion fusion reactions which encompass
the Standard solar model need to be understood better, if
solar neutrinos are to provide even more precise informa-
tion on the neutrino oscillation properties. As an example,
the 7Be(p, γ)8B radiative capture is a rather poorly-known
step in the nucleosynthetic chain leading to 8B, which in
turn is the dominant source of the high-energy solar neu-
trinos (through β-decay to 8Be) detected in terrestrial ex-
periments.

Furthermore, nuclear reactions are one of the best tools
for studying exotic nuclei, which have become the focus of
the next generation experiments with rare-isotope beams.
These are nuclei for which most low-lying states are un-
bound, so that a rigorous analysis requires scattering con-
ditions. In addition, much of the information we have on
the structure of such short-lived nuclei is inferred from re-
actions with other nuclei.

Unfortunately, the calculation of nuclear reactions rep-
resent also a formidable challenge for nuclear theory, the
main obstacle being the treatment of the scattering states.
In this paper we will present a brief overview of existing
theoretical methods for nuclear reactions, highlighting in
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particular recent progress in the ab initio calculation of
low-energy scattering of light nuclei.

1.1 Overview of reaction approaches

Because of their importance nuclear reactions attract much
attention, and there have been many interesting new devel-
opments in the recent past. In this section we will give a
brief overview of the theoretical efforts devoted to nuclear
reactions, and in particular scattering of light nuclei. How-
ever, this is not intended to be completely exhaustive.

Nuclear reaction approaches may be classified accord-
ing to two broad categories. The first category embraces
the so-called microscopic approaches, in which all the nu-
cleons involved in the scattering process are active degrees
of freedom, and the antisymmetrization of the many-body
wave functions is treated exactly.

In the three- and four-nucleon sectors there has been
remarkable progress in the past ten years: the Faddeev [1],
Faddeev-Yacubovski [2,3], Alt-Grassberger and Sandhas
(AGS) [4,5], hyperspherical harmonics [6], Lorentz inte-
gral transform methods [7–9], etc., are among the best known
of several numerically exact techniques able to describe re-
actions observables starting from realistic nucleon-nucleon
(NN) and in some cases also three-nucleon (NNN) forces.

Going beyond four nucleons there are fewer ab initio
or ab initio inspired methods able to describe reactions
observables starting from realistic forces. Only very re-
cently the Green’s function Monte Carlo [10], the no-core-
shell model combined with the resonating group method
(NCSM/RGM) [11,12] and the fermionic molecular dy-
namics [13] have made steps in this direction.

Reactions among light nuclei are more widely described
starting from semirealistic NN interactions with adjusted
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parameters within the traditional resonating-group method
[14–18] or the generator coordinate method [19–21], which
are microscopic cluster techniques.

A second category is that of few-body methods de-
scribing scattering among structureless clusters. Here one
starts form nucleon-Nucleus (usually optical) potentials fit-
ted on some reaction observable, and the nucleus core is
usually inert. There are exact techniques which can em-
ploy either local or non-local optical potentials like the
Faddeev or AGS methods adopted by Deltuva [22,23], and
various approximated ones, like the continuum-discretized
coupled channel equations [24,25], distorted wave born
approximations, or various adiabatic approximations [26],
etc., which usually adopt local optical potentials.

Finally, there are also some recent attempts to describe
reactions among light nuclei in an effective-field theory ap-
proach for halo nuclei [27,28]. Starting from experimental
resonance parameters for the system under investigation,
phase shifts and cross section are predicted at low energy.

Here we focus on one of the above mentioned approaches,
i.e. the NSCM/RGM, for which we will present formalism
in Sec. 2, and a collection of results in Sec. 3. Conclu-
sions and an outline of possible future developments will
be given in Sec. 4.

2 Formalism

A brief overview of the NCSM approach is presented in
Sec. 2.1, the resonating-group method is introduced in Sec. 2.2,
and the NCSM/RGM formalism is described in Section 2.3.

2.1 Ab initio no-core shell model

The NCSM is a technique for the solution of the A-nucleon
bound-state problem. All A (point-like) nucleons are active
degrees of freedom, hence the difference with respect to
standard shell model calculations with inert core. Starting
from a microscopic Hamiltonian (p i being the momentum
of the ith nucleon and m the nucleon mass)

H =
1
A

∑

i< j

(pi − p j)2

2m
+

A∑

i< j
VNN

i j +

A∑

i< j<k
VNNN

i jk , (1)

containing realistic NN (V NN
i j ) or NN plus NNN (VNNN

i jk )
forces (both coordinate- and momentum-space interactions
can be equally handled), the non-relativistic Schrödinger
equation is solved by expanding the wave functions in terms
of a complete set of A-nucleon harmonic oscillator (HO)
basis states up to a maximum excitation Nmax!Ω above the
minimum energy configuration, with Ω the HO frequency.

The choice of the HO basis in a complete Nmax!Ω space
is motivated by its versatility. Indeed, this is the only basis
which allows to work within either Jacobi relative coordi-
nates or Cartesian single-particle coordinates (as well as
easily switch between the two), while preserving the trans-
lational invariance of the system. Consequently, powerful
techniques based on the second quantization and devel-
oped for standard shell model calculations can be utilized.

As a downside, one has to face the consequences of the
incorrect asymptotic behavior of the HO basis.

Standard, accurate NN potentials, such as the Argonne
V18 (AV18) [29], CD-Bonn [30], INOY (inside non-local
outside Yukawa) [31] and, to some extent, also the chiral
N3LO [32], generate strong short-range correlations that
cannot be accommodated even in a reasonably large HO
basis. In order to account for these short-range correla-
tions and to accelerate convergence with respect to the in-
creasing model space, the NCSM makes use of an effec-
tive interaction obtained from the original, realistic NN or
NN+NNN potentials by means of a unitary transformation
in a n−body cluster approximation, where n is typically 2
or 3 [33]. The effective interaction depends on the basis
truncation and by construction converges to the original
realistic NN or NN + NNN interaction as the size of the
basis approaches infinity.

On the other hand, a new class of soft potentials has
been recently developed, mostly by means of unitary trans-
formations of the standard accurate NN potentials men-
tioned above. These include the Vlowk [34], the Similarity
Renormalization Group (SRG) [35] and the UCOM [36]
NN potentials. A different class of soft phenomenological
NN potential used in some NCSM calculations are the so-
called JISP potentials [37]. These so-called soft potentials
are to some extent already renormalized for the purpose
of simplifying many-body calculations. Therefore, one can
perform convergent NCSM calculations with these poten-
tials unmodified, or “bare.” In fact, the chiral N3LO NN
potential [32] can also be used bare with some success.
NCSM calculations with bare potentials are variational with
respect to the HO frequency and the basis truncation pa-
rameter Nmax.

2.2 Resonating-group method

The resonating-group method (RGM) [14–18,38] is a mi-
croscopic cluster technique in which the many-body Hilbert
space is spanned by wave functions describing a system of
two or more clusters in relative motion. Here, we will limit
our discussion to the two-cluster RGM, which is based on
binary-cluster channel states of total angular momentum J,
parity π, and isospin T ,

|ΦJπT
νr 〉 =

[( ∣∣∣A−aα1I π1
1 T1
〉 ∣∣∣aα2I π2

2 T2
〉 )(sT )

× Y(
(
r̂A−a,a

) ](JπT ) δ(r − rA−a,a)
rrA−a,a

. (2)

In the above expression,
( ∣∣∣A−aα1I π1

1 T1
〉

and
∣∣∣aα2I π2

2 T2
〉

are the internal (antisymmetric) wave functions of the first
and second clusters, containing A−a and a nucleons (a<A),
respectively. They are characterized by angular momentum
quantum numbers I1 and I2 coupled together to form chan-
nel spin s. For their parity, isospin and additional quantum
numbers we use, respectively, the notations π i, Ti, and αi,
with i = 1, 2. The cluster centers of mass are separated by
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the relative coordinate

rA−a,a = rA−a,ar̂A−a,a =
1

A − a

A−a∑

i=1
ri −

1
a

A∑

j=A−a+1
r j , (3)

where {ri, i = 1, 2, · · · , A} are the A single-particle coordi-
nates. The channel states (2) have relative angular momen-
tum (. It is convenient to group all relevant quantum num-
bers into a cumulative index ν = {A−aα1I π1

1 T1; aα2I π2
2 T2;

s(}.
The former basis states can be used to expand the many-

body wave function according to

|Ψ JπT 〉 =
∑

ν

∫
dr r2 g

JπT
ν (r)

r
Âν |ΦJπT

νr 〉 . (4)

However, to preserve the Pauli principle one has to intro-
duce the appropriate inter-cluster antisymmetrizer, schemat-
ically

Âν =
√

(A−a)!a!
A!

∑

P
(−)pP , (5)

where the sum runs over all possible permutations P that
can be carried out among nucleons pertaining to differ-
ent clusters, and p is the number of interchanges char-
acterizing them. Indeed, the basis states (2) are not anti-
symmetric under exchange of nucleons belonging to dif-
ferent clusters.

The coefficients of the expansion (4) are the relative-
motion wave functions g JπT

ν (r). These are the only unknowns
of the problem, to be determined solving the non-local
integral-differential coupled-channel equations

∑

ν

∫
dr r2

[
H JπT
ν′ν (r′, r) − EN JπT

ν′ν (r′, r)
] gJπT
ν (r)

r
= 0 ,

(6)
where E denotes the total energy in the center-of-mass
frame. Here, the two integration kernels, specifically the
Hamiltonian kernel,

H JπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′
∣∣∣ Âν′HÂν

∣∣∣ΦJπT
νr

〉
, (7)

and the norm kernel,

N JπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′
∣∣∣ Âν′Âν

∣∣∣ΦJπT
νr

〉
, (8)

contain all the nuclear structure and antisymmetrization
properties of the problem. The somewhat unusual presence
of a norm kernel is the result of the non-orthogonality of
the basis states (2), caused by the presence of the inter-
cluster antisymmetrizer. The exchange terms of this anti-
symmetrization operator are also responsible for the non-
locality of the two kernels.

The main inputs of the RGM method are i) the internu-
cleon interaction; and ii) the wave functions of the (A− a)-
and a-nucleon clusters. Staring from the latters, in the tra-
ditional RGM the clusters internal wave functions are of-
ten (but not exclusively) translationally invariant HO shell-
model functions of the lowest configuration or a linear su-
perposition of such functions. The value of the HO size

parameters b are chosen ad hoc to reproduce properties of
the nucleon clusters (such as size and/or binding energy,
etc.) within the adopted interaction. This somewhat sim-
plified description of the clusters internal wave functions
is usually compensated by the use of semirealistic NN in-
teractions, such as the Volkov [39] or Minnesota [40] po-
tentials, with parameters that can be adjusted to reproduces
important properties of the compound nucleus or reaction
under study. The spin-orbit force, not present in the men-
tioned semi-realistic interactions, is sometimes added to
the microscopic Hamiltonian. Exception to this general de-
scription of the RGM approach exist, particularly in the
few-nucleon sector, where the method has been utilized in
combination with realistic NN and NN+NNN forces [38].
Finally, the treatment of the Coulomb interaction between
charged clusters does not represent an issue in the RGM
approach.

The advantage in expressing the RGM basis states (2)
as antisymmetrized products of single-particle functions,
and in particular Slater determinants, lies in the ability to
carry out analytical derivations of the required matrix ele-
ments (7) and (8). Once the integration kernels are calcu-
lated, by solving the integral-differential coupled channel
equations (6) subject to appropriate boundary conditions,
one obtains bound-state wave functions and binding en-
ergies or scattering wave functions and scattering matrix,
from which any other scattering and reaction observable
can be calculated.

2.3 Ab initio NCSM/RGM approach

A new first-principles, many-body approach capable of si-
multaneously describing both bound and scattering states
in light nuclei has been developed by combining the RGM
with the ab initio NCSM [11,12]. This new approach com-
plements the microscopic-cluster technique of the RGM
with the utilization of realistic interactions and a consistent
microscopic description of the nucleonic clusters, while
preserving important symmetries such as Pauli exclusion
principle, translational invariance, and angular momentum.
More in detail, the formalism presented in Section 2.2 can
be combined with the ab initio NCSM as follows.

First, we note that the Hamiltonian can be written as

H = Trel(r) +Vrel + V̄C(r) + H(A−a) + H(a) , (9)

where H(A−a) and H(a) are the (A−a)- and a-nucleon intrin-
sic Hamiltonians, respectively, T rel(r) is the relative kinetic
energy andVrel is the sum of all interactions between nu-
cleons belonging to different clusters after subtraction of
the average Coulomb interaction between them, explicitly
singled out in the term V̄C(r) = Z1νZ2νe2/r (Z1ν and Z2ν
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being the charge numbers of the clusters in channel ν)

Vrel =

A−a∑

i=1

A∑

j=A−a+1
VNN

i j − V̄C(r) +VNNN
(A−a,a)

=

A−a∑

i=1

A∑

j=A−a+1

[
VN(ri − r j,σi,σ j, τi, τ j)

+
e2(1 + τz

i )(1 + τ
z
j)

4|ri − r j|
− 1

(A − a)a
V̄C(r)

]

+VNNN
(A−a,a) . (10)

Nuclear, VN(ri−r j,σi,σ j, τi, τ j), and point-Coulomb com-
ponents of the two-body potential have been listed explic-
itly ( σi, τi denoting spin and isospin coordinates, respec-
tively, of the ith nucleon). If the A-nucleon Hamiltonian
contains a NNN force, the inter-cluster interaction V rel
will present also a contribution from the latter, denoted
here with V NNN

(A−a,a).
The cluster’s Hamiltonians and inter-cluster interaction

Vrel are consistent, as they contain the same realistic po-
tentials. The clusters internal wave functions are also treated
consistently:

( ∣∣∣A−aα1I π1
1 T1
〉

and
∣∣∣aα2I π2

2 T2
〉

are obtained
by diagonalizing H(A−a) and H(a), respectively, in the model
spaces spanned by the NCSM basis. Both the (A − a)- and
a-nucleon model spaces are characterized by the same HO
frequency Ω and maximum number Nmax of excitations
above the minimum configuration. At the same time, in
calculating the Hamiltonian and norm kernels of Eqs. (7),
and (8), all “direct” terms arising from the identical permu-
tations in both Âν and Âν′ are treated exactly (with respect
to the separation r) with the exception of

〈
ΦJπT
ν′r′
∣∣∣Vrel

∣∣∣ΦJπT
νr

〉
.

The latter and all remaining terms are localized and can be
obtained by expanding the Dirac δ of Eq. (2) on a set of
HO radial wave functions with identical frequency Ω, and
model-space size Nmax consistent with those used for the
two clusters. In this respect, we note that, thanks to the
subtraction of the average potential V̄C(r),Vrel is localized
also in the presence of the Coulomb force.

If the adopted potential generates strong short-range
correlations, we employ consistent NCSM effective inter-
actions derived from it. More specifically, the cluster eigen-
states are obtained by employing the usual NCSM effective
interaction [33]. However, in place of the bare potential en-
teringVrel we adopt a modified effective interaction, which
avoids renormalizations related to the kinetic energy. Fol-
lowing the notation of Ref. [33], at the two-body cluster
level this is given by V ′2eff = H̄2eff − H̄′2eff , where H̄′2eff is
the effective Hamiltonian derived from HΩ ′2 = H02 + V ′12,
with V ′12 = −mΩ2r 2/A. Note that V ′2eff → VN in the limit
Nmax → ∞ and, for each model space, the renormaliza-
tions related to the kinetic energy and the HO potential in-
troduced in H̄2eff are compensated by the subtraction of
H̄′2eff . The kinetic-energy renormalizations are appropri-
ate within the standard NCSM, but they would compro-
mise scattering results obtained within the NCSM/RGM
approach, in which the relative kinetic energy and average

Coulomb potential between the clusters are treated exactly
(that is, are not truncated within a finite HO model space).

2.3.1 Integration kernels

To give a somewhat more in depth description of the for-
malism involved in the calculation of the matrix elements
(7) and (8), here we will present examples of algebraic ex-
pressions derived within the single-nucleon projectile ba-
sis, i.e., for binary-cluster channel states (2) with a = 1
(with channel index ν = {A−1α1Iπ1

1 T1; 1 1
2

1
2 ; s(}). In this

model space, the norm kernel is rather simple and is given
by

N JπT
ν′ν (r′, r) =

〈
ΦJπT
ν′r′
∣∣∣ 1 −

A−1∑

i=1
P̂iA
∣∣∣ΦJπT
νr

〉
(11)

= δν′ ν
δ(r′ − r)

r′ r
− (A − 1)

∑

n′n
Rn′(′(r′)Rn((r)

×
〈
ΦJπT
ν′n′
∣∣∣ P̂A−1,A

∣∣∣ΦJπT
νn

〉
, (12)

where it is easy to recognize a direct term, in which initial
and final state are identical (corresponding to diagram (a)
of Fig. 1), and a many-body correction due to the exchange
part of the inter-cluster anti-symmetrizer (corresponding to
diagram (b) of Fig. 1). As the exchange P̂A−1,A is a short-
range operator, in calculating its matrix elements we re-
placed the delta function of Eq. (2) with its representation
in the HO model space. Such HO expansion is appropriate
whenever the operator is short-to-medium range.

The presence of the inter-cluster anti-symmetrizer af-
fects also the Hamiltonian kernel, and in particular the ma-
trix elements of the interaction:

H JπT
ν′ν (r′, r)=

〈
ΦJπT
ν′r′
∣∣∣H
[
1 −

A−1∑

i=1
P̂iA
] ∣∣∣ΦJπT

νr

〉
(13)

=
[
T̂rel(r′)+V̄C(r′)+EI

′π′1
1 T ′1
α′1

]
N JπT
ν′ν (r′, r)

+VD
ν′ν(r′, r) +V ex

ν′ν(r′, r) , (14)

where EI
′π′1
1 T ′1
α′1

are the eigenenergies of the (A − 1)-nucleon
cluster. If no NNN forces are present in the Hamiltonian
one obtains a “direct” term involving interaction and ex-
change of one of the nucleons in the first cluster with the
nucleon (a = 1) of the second cluster (see diagrams (c) and
(d) of Fig. 1), and an “exchange” term involving the inter-
action of the Ath nucleon with one of the (A− 1) nucleons,
accompanied by the exchange with a second of such nucle-
ons. Diagram (e) of Fig. 1 describes this latter term. These
two potential kernels, which together constitute the matrix
element

〈
ΦJπT
ν′r′
∣∣∣Vrel Â2

∣∣∣ΦJπT
νr

〉
, have the following expres-
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(a) (b)

ν, r

ν′, r′

1

1

2

2

A-2

A-2

A-1

A-1

A

A

· · ·

· · ·

· · ·· · ·

(c) (d) (e)

· · ·· · · · · ·

Fig. 1. Diagrammatic representation of: (a) “direct” and (b) “exchange” components of the norm kernel; (c and d) “direct” and (e)
“exchange” components of the potential kernel. The first group of circled black lines represents the first cluster, the bound state of A−1
nucleons. The separate red line represents the second cluster, in the specific case a single nucleon. Bottom and upper part of the diagram
represent initial and final states, respectively.

sions:

VD
ν′ν(r′, r) = (A − 1)

∑

n′n
Rn′(′ (r′)Rn((r)

×
〈
ΦJπT
ν′n′
∣∣∣VA−1,A

(
1− P̂A−1,A

) ∣∣∣ΦJπT
νn

〉

(15)
V ex
ν′ν(r

′, r) = −(A − 1)(A − 2)
∑

n′n
Rn′(′ (r′)Rn((r)

×
〈
ΦJπT
ν′n′
∣∣∣ P̂A−1,A VA−2,A−1

∣∣∣ΦJπT
νn

〉
. (16)

The inclusion of a NNN interaction in the Hamiltonian
is straightforward, and amounts to extra “direct” and “ex-
change” potential kernels, which can be obtained in a sim-
ilar way.

Being translationally-invariant quantities, the Hamilto-
nian and norm kernels (7, 8) can be “naturally” derived
working within the NCSM Jacobi-coordinate basis. How-
ever, particularly for the purpose of calculating reactions
involving p-shell nuclei, it is computationally advantageous
to introduce Slater-determinant (SD) channel states of the
type

|ΦJπT
νn 〉SD =

[( |A−aα1I1T1〉SD |aα2I2T2〉
)(sT )

×Y((R̂(a)
c.m.)
](JπT )

Rn((R(a)
c.m.) , (17)

in which the eigenstates of the (A−a)-nucleon fragment
are obtained in the SD basis (while the second cluster is
still a NCSM Jacobi-coordinate eigenstate), and R (a) =
a−1/2∑A

i=A−a+1 ri is the vector proportional to the center of
mass coordinate of the a-nucleon cluster. Indeed, it easy to
demonstrate that translationally invariant matrix elements
can be extracted from those calculated in the SD basis of
Eq. (17) by inverting the following expression:

SD
〈
ΦJπT
ν′n′
∣∣∣ Ôt.i.

∣∣∣ΦJπT
νn

〉
SD =

∑

n′r(′r ,nr(r ,Jr

〈
ΦJπrr T
ν′rn′r

∣∣∣∣ Ôt.i.

∣∣∣∣ΦJπrr T
νrnr

〉

×
∑

NL
(̂(̂′ Ĵ2

r (−1)(s+(−s′−(′)
{

s (r Jr
L J (

}{
s′ (′r Jr
L J (′

}

×〈nr(rNL(|00n((〉 a
A−a
〈n′r(′rNL(|00n′(′(′〉 a

A−a
. (18)

Here Ôt.i. represents any scalar and parity-conserving and
translationally-invariant operator (Ôt.i. = Â, ÂHÂ, etc.),
and 〈nr(rNL(|00n((〉 a

A−a
, 〈n′r(′rNL(|00n′(′(′〉 a

A−a
are general

HO brackets for two particles with mass ratio a/(A−a). We
exploited both Jacobi-coordinate and SD channel states to
verify our results.

As an example, the single-nucleon projectile “exchange”
part of the norm kernel within the Jacobi-coordinate basis
for a system of A = 3 nucleons is given by:

N JπT
ν′ν (r′, r) = δν′ν

δ(r′ − r)
r′ r

− 2
∑

n′n
Rn′(′ (r′)Rn((r) (19)

×
∑

n′1(
′
1 s′1

〈
n′1(
′
1s′1I′1T ′1

∣∣∣2α′1I′π
′
1

1 T ′1
〉

×
∑

n1(1 s1

〈
n1(1s1I1T1

∣∣∣2α1Iπ1
1 T1
〉

×T̂ ′1T̂1(−)T ′1+T1




s 1
2 T1

1
2 T T ′1


 ŝ′1 ŝ1 Î′1 Î1 ŝ′ ŝ (−)(1+(

×
∑

Λ,Z
Λ̂2Ẑ2(−)Λ




1
2

1
2 s1

1
2 Z s′1






(′1 Z s′

J (′ Λ




×


(′1 Z s′

1
2 I′1 s′1






(1 Z s

J ( Λ






(1 Z s
1
2 I1 s1




×〈n′(′, n′1(′1,Λ|n1(1, n(,Λ〉3 . (20)

Here
〈
n1(1s1I1T1

∣∣∣2α1Iπ1
1 T1
〉

and
〈
n′1(
′
1s′1I′1T ′1

∣∣∣2α′1I′π
′
1

1 T ′1
〉

are
the coefficients of the expansion of initial and final two-
nucleon target wave functions, respectively, with respect
to the HO basis states depending on the Jacobi, spin, and
isospin coordinates ξ1 = (r1 − r2)/

√
2, σ1,σ2, and τ1, τ2,

respectively,

〈ξ1σ1σ2τ1τ2|n1(1s1I1T1〉 , (21)

where n1, (1 are the HO quantum numbers corresponding
to the harmonic oscillator associated with ξ1, while s1, I1,
and T1 are the spin, total angular momentum, and isospin
of the two-nucleon channel formed by nucleons 1 and 2, re-
spectively. Note that the basis (21) is anti-symmetric with
respect to the exchange of the two nucleons, (−) (1+s1+T1 =
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Fig. 2. Calculated “exchange” part of the norm kernel,
N JπT
(( (r′, r)− δ(r′−r)

r′ r for the n+ α(g.s.) 2S 1/2 (top panel), and 2P3/2
(bottom panel) channels as a function of the relative coordinate
r at r′, using the N3LO NN potential [32] at !Ω = 19 MeV. The
2S 1/2 channel is strongly influenced by the Pauli-exclusion prin-
ciple, which forbids to accommodate more than four nucleons
into the s-shell of a nuclear system. The four nucleons forming
the 4He g.s. sit mostly in the 0!Ω shell. Accordingly, in the 2S 1/2
channel the “exchange”-part of the norm kernel suppresses the
(dominant) 0!Ω contribution to the δ function of Eq. (12) (and,
consequently, to the S -wave relative-motion wave function g

1
2
+ 1

2
(=0 )

coming from the fifth nucleon in s-shell configuration. The situ-
ation is different if we consider a different partial wave, like the
2P3/2 channel, corresponding to the 5He resonance. In this case
the exchange norm represents a small and positive correction to
the delta function.

−1. Finally, 〈n′(′, n′1(′1,Λ|n1(1, n(,Λ〉3 are the general HO
brackets for two particles with mass ratio 3.

At the same time, as mentioned above, the matrix el-
ements of the operators P̂A−1,A, VA−1,A(1 − P̂A−1,A), and
P̂A−1,AVA−2,A−1 can be more intuitively derived working
within the SD basis of Eq. (17). Using the second-quantization
formalism, they can be related to linear combinations of
matrix elements of creation and annihilation operators be-
tween (A−1)-nucleons SD states. As an example, the case

of the exchange operator P̂A−1,A yields:

SD〈ΦJπT
ν′ n′ |P̂A,A−1|ΦJπT

ν n 〉SD

=
1

A − 1

∑

j j′Kτ
ŝŝ′ ĵ ĵ′K̂τ̂(−1)I′1+ j′+J(−1)T1+

1
2+T

×



I1
1
2 s

( J j







I′1
1
2 s′

(′ J j′







I1 K I′1
j′ J j







T1 τ T ′1
1
2 T 1

2




× SD〈A−1α′I′1T ′1|||(a†n( j 1
2
ãn′(′ j′ 1

2
)(Kτ)|||A−1αI1T1〉SD .

(22)

Here, SD〈A−1α′I′1T ′1|||(a
†
n( j 1

2
ãn′(′ j′ 1

2
)(Kτ)|||A−1αI1T1〉SD are

one-body density matrix elements of the target nucleus and
ãn′(′ j′m′ 1

2 m′t = (−1) j′−m′+ 1
2−m′t an′(′ j′−m′ 1

2−m′t . Next we extract
the corresponding translationally-invariant matrix elements,
〈Φ(A−1,1)Jπrr T
ν′r n′r

|P̂A,A−1|Φ(A−1,1)Jπrr T
νr nr 〉, by inverting Eq. (18) for

a = 1 and Ôt.i. = P̂A−1,A. The final step follows easily from
Eq. (12).

Due to the exchange terms of the intercluster antisym-
metrizers, norm and potential kernels are non-local and ap-
pear as surfaces in three dimensions such as, e.g., those
shown in Figs. 2 and 3. The latter figures present results
of single-channel calculations carried out using n-α cluster
channels with the α particle in its g.s. (note that the index
ν = {4 g.s. 0+0; 1 1

2
+ 1

2 ; 1
2(} is simply replaced by the quan-

tum number (). The interaction models adopted are the
N3LO NN potential [32], and the V lowk NN potential [34]
derived from AV18 [29] with cutoff Λ = 2.1 fm−1.

2.3.2 Orthogonalization of the RGM equations

An important point to notice, is that Eq. (6) does not repre-
sent a system of multichannel Schrödinger equations, and
gJπT
ν (r) do not represent Schrödinger wave functions. This

feature, which is indicated by the presence of the norm
kernel N JπT

ν′ν (r′, r) and is caused by the short-range non-
orthogonality induced by the non-identical permutations in
the inter-cluster anti-symmetrizers, can be removed by in-
troducing normalized Schrödinger wave functions

χJπT
ν (r)

r
=
∑

γ

∫
dy y2N

1
2
νγ(r, y)

gJπT
γ (y)
y
, (23)

where N 1
2 is the square root of the norm kernel, and ap-

plying the inverse-square root of the norm kernel, N − 1
2 ,

to both left and right-hand side of the square brackets in
Eq. (6). By means of this procedure, known as orthogo-
nalization and explained in more detail in Ref. [12], one
obtains a system of multichannel Schrödinger equations:

[T̂rel(r) + V̄C(r) − (E − EIπ11 T1
α1 − EIπ22 T2

α2 )]
χJπT
ν (r)

r

+
∑

ν′

∫
dr′ r′ 2 W JπT

νν′ (r, r′)
χJπT
ν′ (r′)

r′
= 0, (24)
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Fig. 3. Calculated “direct” (top figures) and “exchange” (bottom figures) potential kernels for the n + α(g.s.) 2S 1/2 (left column), and
2P3/2 (right column) channels as a function of the relative coordinate r at r′, using the Vlowk NN potential [34] at !Ω = 18 MeV. The 2S 1/2
channel is strongly influenced by the Pauli-exclusion principle, which forbids to accommodate more than four nucleons into the s-shell
of a nuclear system: the exchange potential introduces repulsion between a nucleon in the α particle and the fifth nucleon when they are
both in s-shell, largely suppressing the attractive contribution of the direct potential. The situation is different if we consider a different
partial wave, like the 2P3/2 channel, corresponding to the 5He resonance. In this case both direct and exchange potential are attractive.

where EIπii Ti
αi are the energy eigenvalues of the i-th clus-

ter (i = 1, 2), and W JπT
ν′ν (r′, r) are the overall non-local po-

tentials between the two clusters, which depend upon the
channel of relative motion, while do not depend upon the
energy E of the system.

3 Results

The two-cluster NCSM/RGM formalism within the single-
nucleon projectile outlined in the previous section, can be
used to calculate nucleon-nucleus phase shifts below three-
body break threshold, by solving the system of multi-
channel Schrödinger equations (24) with scattering bound-
ary conditions. In the next sections we will review part
of the results for neutrons scattering on 3H, 4He and 10Be
and protons scattering on 3,4He, using realistic NN poten-
tials, which were first presented in Refs. [11] and [12], and
present some new calculations.

3.1 Convergence with respect to the HO model
space

To study the behavior of our approach with respect to the
HO model space, we have performed NCSM/RGM scatter-
ing calculations for the A = 5 systems, using the V lowk NN
potential [34], which is “soft” and we treated as “bare”,
and the N3LO NN interaction [32], which generates strong
short-range correlations, thus requiring the use of effective
interactions. In particular, for this convergence tests, we re-
stricted our binary-cluster basis to target-nucleon channel
states with the target in its g.s. (corresponding to channel
indexes of the type ν = {4 g.s. 0+0; 1 1

2
+ 1

2 ; 1
2 (}).

Results obtained for Vlowk are presented in Fig. 4. The
overall convergence is quite satisfactory, with a weak de-
pendence on Nmax.

Figure 5 presents the convergence rate (achieved by
using two-body effective interactions tailored to the HO
model-space truncation) obtained for the same n-α scat-
tering phase shifts with the N3LO potential. Clearly, the
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N3LO results converge at a much slower rate than the V lowk
ones. However, a gradual suppression of the difference be-
tween adjacent Nmax values with increasing model-space
size is visible, although the pattern is somewhat irregular
for the P phase shifts.

Although not shown, the p-α phase shifts present anal-
ogous convergence properties.

The next figure, Fig. 6 compares the Nmax = 17 re-
sults for the previously discussed V lowk and N3LO NN in-
teractions, and those obtained with the CD-Bonn NN po-
tential [30]. The NCSM/RGM calculations for the latter
potential were carried out using two-body effective inter-
actions, and present a convergence pattern similar to the
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Fig. 6. Calculated n-α(g.s.) phase shifts obtained in the largest
model space (Nmax = 17) for the Vlowk [34] NN potential at !Ω =
18 MeV and the N3LO [32] and CD-Bonn [30] NN interactions
at !Ω = 19 MeV.

one observed for N3LO. Clearly, the 2P1/2 and 2P3/2 phase
shifts are sensitive to the interaction models, and, in par-
ticular, to the strength of the spin-orbit force. This obser-
vation is in agreement with what was found in the earlier
study of Ref. [10]. Following a behavior already observed
in the structure of p-shell nuclei, CD-Bonn and N3LO in-
teractions yield about the same spin-orbit splitting. On the
contrary, the larger separation between the V lowk 3/2− and
1/2− resonant phase shifts is direct evidence for a stronger
spin-orbit interaction.

As the 1/2+ channel is dominated by the repulsion be-
tween the neutron and the α particle induced by the Pauli
exclusion principle (see also Figs. 2, 3), the short-range
details of the nuclear interaction play a minor role on the
2S 1/2 phase shifts. As a consequence, we find very similar
results for all of the three adopted NN potential models.

3.2 Test of the NCSM/RGM approach in the
four-nucleon sector

A stringent test-ground to study the performances of the
NCSM/RGM approach within the single-nucleon projec-
tile basis is provided by the four-nucleon system. Numer-
ically exact calculations for the A = 4 sector have been
already successfully performed within accurate few-body
techniques, such as Faddeev-Yacubovsky,AGS, and hyper-
spherical harmonics methods [2–6,41].

Figures 7 and 8 show n -3H and p -3He phase shifts, re-
spectively, calculated with the N3LO NN potential [32] to-
gether with results obtained by Deltuva and Fonseca [4,42]
from the solution of the AGS equations (+ symbols) us-
ing the same interaction. The convergence behavior of The
NCSM/RGM calculations was achieved using two-body
effective interactions tailored to the model-space trunca-
tion, as outlined in Sec. 2.3. For the 1S 0, 1P1 and 3S 1 par-
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2 ; 1 1
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+ 1

2 ; s (}).

tial waves, the increase in model-space size produces grad-
ually smaller deviations with a clear convergence towards
the Nmax = 19 results. The rest of the phase shifts, particu-
larly the 3P0, show a more irregular pattern. Nevertheless,
in the whole energy-range we find less than 2 deg absolute
difference between the phases obtained in the largest and
next-to-largest model spaces.

Concerning the comparison to the highly accurate AGS
results, in general the agreement between the two calcu-
lations worsens as the relative kinetic energy in the c.m.
frame, Ekin, increases. This discrepancy is a manifestation
of the the influence played by closed channels not included
in our basis states, that is, target-nucleon channel states
with the target above the Iπ1

1 =
1
2
+ g.s., and 2+2 config-

urations, both of which are taken into account by the AGS
results. Because these states correspond to the breakup of
the A = 3 system, it is not feasible to include them in the
current version of the NCSM/RGM approach, which so far
has been derived only in the single-nucleon projectile ba-
sis. However, we are planning on extending our approach
to be able to account for the target breakup, and these de-
velopment will be discussed in future publications. Never-
theless, this test of the NCSM/RGM approach in the A = 4
sector clearly indicates that one has to pay attention not
only to the convergence with respect to the HO model-

space size Nmax, but also to the convergence in the RGM
model space, which is enlarged by including excited states
of the nucleon clusters in the binary-channel basis states.

3.3 4He(N, N)4He scattering

A better scenario for the application of the NCSM/RGM
approach within the single-nucleon projectile basis is the
scattering of nucleons on 4He. This process is character-
ized by a single open channel up to the 4He breakup thresh-
old, which is fairly high in energy. In addition the low-
lying resonances of 4He are narrow enough that they can
be reasonably reproduced by diagonalizing the four-body
Hamiltonian in the NCSM model space, and consistently
included as closed channels in the NCSM/RGM model
space.

In Fig. 9 we explore the effect of the inclusion of the
first six excited states of the 4He on the n-α scattering
phase shifts obtained with the N3LO NN interaction. More
specifically, in addition to the single-channel results (dot-
ted line) discussed in Sec. 3.1, we show coupled-channel
calculations for five different combinations of 4He states,
i.e., i) g.s.,0+0 (dash-dotted line), ii) g.s.,0+0, 0−0 (dash-
dot-dotted line), iii) g.s.,0+0, 0−0, 1−0, 1−1 (dash-dash-dotted
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line), iv) g.s.,0+0, 2−0 (dashed line), and v) g.s.,0+0, 2−0, 2−1
(solid line).

The use of these five different combinations of ground
and excited states (also shown in the legends of Fig. 9)
indicates that the 2S 1/2 phase shifts are well described al-
ready by coupled channel calculations with g.s. and first
0+0 (the 2S 1/2 phase shifts obtained in the four larger Hilbert
spaces are omitted for clarity of the figure). On the con-
trary, the negative parity excited states have relatively large
effects on the P phase shifts, and in particular the 0−0, 1−0
and 1−1 mostly on the 2P1/2, whereas the 2−0 and 2−1
on the 2P3/2. These negative parity states influence the P
phase shifts because they introduce couplings to the s-wave
of relative motion. Though also I π1

1 = 1− couples to ( = 0
in the 3/2− channel, the coupling of the I π1

1 = 2− states is
dominant for the 2P3/2 phase shifts.

Figure 10 compares an accurate R-matrix analysis of
the nucleon-α scattering [43] with NCSM/RGM results ob-
tained including the first six 4He excited states as in Fig. 9.
This comparison reveals that for both neutron (top panel)
and proton (bottom panel) projectiles we can describe quite
well the 2S 1/2 and qualitatively also the 2D3/2 phase shifts,
using the N3LO NN potential. On the contrary, the same
interaction is not able to reproduce well the two P phase
shifts, which are both too small and too close to each other.
This lack of spin-orbit splitting between the 2P1/2 and 2P1/2
results can be explained by the omission in our treatment
of the NNN terms of the chiral interaction, which would
provide additional spin-orbit force. This sensitivity of the
P phases to the strength of the spin-orbit force corrobo-
rated by the differences among the V lowk, N3LO and CD-
Bonn results in Fig. 4: 2P1/2 and 2P3/2 are both larger and

more apart for Vlowk than for N3LO or CD-Bonn potentials.
At the same time, the good agreement of the N3LO and
CD-Bonn 2S 1/2 phase shifts with their Vlowk analogous and
the R-matrix analysis owes to the repulsive action (in this
channel) of the Pauli exclusion principle for short nucleon-
α distances, which has the effect to mask the short-range
details of the nuclear interaction.

As shown in Fig. 11, a stronger spin-orbit interaction
is shown also by the 4He(n, n)4He 3/2− and 1/2− resonant
phase shifts obtained using the SRG-evolved N3LO NN
potential with cutoff Λ = 2.02 fm−1 [44], in a NCSM/
RGM n-αmodel space including g.s. and 0+0 states of 4He.
As for Vlowk the two resonances present larger separation.
In addition, in the SRG-N3LO case, the 2P1/2 phase shifts
lie on top of the n-α R-matrix analysis of Ref. [43] in the
whole energy range, and one finds a satisfactory agreement
with the R-matrix results for all four lowest partial waves
starting from about Ekin = 12 MeV. This particularly good
quality of the SRG-N3LO N-4He phase shifts for energies
far from the low-lying resonances is the reason behind the
the fairly good agreement, presented in Fig. 12, of the cal-
culated 4He(n, n)4He analyzing power (top panel) and dif-
ferential cross section (bottom panel) with the experimen-
tal data of the 17 MeV polarized-neutron experiments of
Ref. [45].

3.4 n−10Be scattering and 11Be bound states

Figure 13 highlights one of the promising aspects of the
NCSM/RGM approach, that is the ability (through the use
of SD channel states) to perform ab initio scattering calcu-
lations for p-shell nuclei. The 2S 1/2 (top panel) and 2D5/2
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shift results for the N3LO NN potential [32] at !Ω = 19 MeV.
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of the further inclusion of, respectively, the 0−0, 1−0, 1−1, and
2−0, 2−1 states are investigated in a Nmax = 15 model space.

(bottom panel) n-10Be phase shifts were obtained in a Nmax =
6, !Ω = 13 HO model space. The inclusion of the 2+1 ex-
cited state of 10Be has a significant effect on the S and
more importantly on the D phase, where it is essential for
the appearance of a resonance below 3 MeV. We note that
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a resonance has been observed at ∼ 1.8 MeV with a ten-
tative spin assignment of (5/2, 3/2)+ [46]. The further ad-
dition of the 2+2 and especially 1+1 excited states produces
rather weak differences. We have also extracted the scat-
tering length for the 2S 1/2 partial wave, and found a result
of +10.7fm, which is comparable to the value of +13.6 fm
obtained by Descouvemont in Ref. [47], by fitting the ex-
perimental binding energy of 11Be.

Although we mainly described its scattering applica-
tions, the NCSM/RGM is a powerful tool also for struc-
ture calculations, particularly for loosely-bound systems.
By imposing bound-state boundary conditions to the set
of coupled channel Schrödinger equations of Eq. (24), we
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tested the performance of our single-nucleon projectile
NCSM/RGM formalism for the description of one-nucleon
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Fig. 13. Calculated n -10Be phase shifts as a function of the rel-
ative kinetic energy in the c.m. frame Ekin , using the CD-Bonn
NN potential [30] at !Ω = 13 MeV: (top panel) 2S 1/2 and (bot-
tom panel) 2D5/2 results. The NCSM/RGM results were obtained
using n+10Be configurations with Nmax = 6 g.s., 2+1 , 2+2 , and 1+1
states of 10Be. The obtained 2S 1/2 scattering length is +10.7 fm.

halo systems. In particular, because of the well-known parity-
inversion between its two bound states with respect to the
predictions of the simple shell model [48], the 11Be nu-
cleus represents an excellent test ground for our approach.

Large-scale ab initio NCSM calculations with several
accurate NN potentials of the 11Be low-lying spectrum were
not able to explain its g.s. parity inversion [50]. The ex-
planation for these results can be searched into two main
causes: (i) the size of the HO basis was not large enough
to reproduce the correct asymptotic of the n- 10Be compo-
nent of the 11-body wave function; (ii) the NNN force, not
included in the calculation, plays an important role in the
inversion mechanism. The second hypothesis was corrob-
orated by the results obtained with the INOY NN poten-
tial [31], which seemed to indicate the possibility to reach
the inversion in a large NCSM basis.

By studying the 11Be bound states in a NCSM/RGM
model space spanned by n-10Be channel states with in-
clusion of the Nmax = 6 g.s., 2+1 , 2

+
2 , and 1+1 of 10Be, we

are now in the position to address the first hypothesis. In-
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Table 1. Calculated energies (in MeV) of the 10Be g.s. and of the lowest negative- and positive-parity states in 11Be, obtained using the
CD-Bonn NN potential [30] at !Ω = 13 MeV. The NCSM/RGM results were obtained using n+10Be configurations with Nmax = 6 g.s.,
2+1 , 2+2 , and 1+1 states of 10Be.

10Be 11Be( 1
2
−) 11Be( 1

2
+)

Nmax Eg.s. E Eth E Eth

NCSM [49,50] 8/9 −57.06 −56.95 0.11 −54.26 2.80
NCSM [49–51] 6/7 −57.17 −57.51 −0.34 −54.39 2.78
NCSM/RGM [51] −57.59 −0.42 −57.85 −0.68
Expt. −64.98 −65.16 −0.18 −65.48 −0.50

deed, the correct asymptotic behavior of the n- 10Be wave
functions is described naturally in the NCSM/RGM ap-
proach. The energies of the lowest 1/2+ and 1/2− states
of 11Be obtained in the NCSM and in the NCSM/RGM
calculations, using the same CD-Bonn NN interaction [30]
at !Ω = 13 MeV adopted in Ref. [50], are presented in Ta-
ble 1. The relatively small differences between the Nmax =
6/7 and Nmax = 8/9 NCSM results, seems to indicate a
reasonable degree of convergence for these calculations.
The 1/2− state appears to be the g.s., and the 1/2+ state
is about 2.8 MeV above the n -10Be threshold. A compari-
son to the NCSM/RGM calculations (obtained in a model
space including g.s., 2+1 , 2+2 , and 1+1 states of 10Be) shows
a rough agreement for the 1/2− state, whereas for the 1/2+
state one observes a dramatic difference (∼3.5 MeV) in the
energy. The 1/2− and 1/2+ NCSM/RGM states are both
bound and the 1/2+ state is the g.s. of 11Be. Correspond-
ingly, we obtain a B(E1; 1

2
− → 1

2
+) value of 0.18 e2 fm2,

which is not far from experiment.
To understand the mechanism which makes the 1/2+

state bound in the NCSM/RGM, we evaluated mean val-
ues of the relative kinetic and potential energies as well
as the mean value of the 10Be energy, and compared them
to those obtained by restricting all the integration kernels
to the HO model space (i.e. by replacing the delta func-
tion of Eq. (12) with its representation in the HO model
space). These results are shown in Table 2. The model-
space-restricted calculation is then similar, although not
identical, to the standard NCSM calculation. In particular,
as in the NCSM one loses the correct asymptotic behav-
ior of the n-10Be wave function. We observe that in the
full NCSM/RGM calculation both relative kinetic and po-
tential energies are smaller in absolute value. This is an
effect of the re-scaling of the relative wave function in the
internal region when the Whittaker tail is recovered. The
difference is significantly more substantial for the relative
kinetic energy than for the potential energy. As a result one

Table 2. Mean values of the relative kinetic and potential energy
and of the internal 10Be energy in the 11Be 1/2+ ground state. All
energies in MeV. NCSM/RGM calculation as in Table 1. See the
text for further details.

NCSM/RGM 〈Trel〉 〈W〉 E[10Be(g.s., ex.)] Etot

Model Space 16.65 −15.02 −56.66 −55.03
Full 6.56 −7.39 −57.02 −57.85

obtains a dramatic decrease of the energy of the 1/2+ state,
which makes it bound and even leads to a g.s. parity in-
version. This study shows that a proper treatment of the
coupling to the n -10Be continuum is essential in explain-
ing the g.s. parity inversion. However, we cannot exclude
that the NNN force plays a role in the inversion mecha-
nism, not until accurate calculations with both NNN force
and full treatment of the n-10Be tail will be performed.

4 Conclusions and Outlook

We have reviewed the NCSM/RGM, a new ab initio many-
body approach capable of describing simultaneously both
bound and scattering states in light nuclei, by combining
the RGM with the use of realistic interactions, and a mi-
croscopic and consistent description of the nucleon clus-
ters, achieved via the ab initio NCSM. In particular, we
have outlined the formalism on which the NCSM/RGM is
based, and given examples of the algebraic expressions for
the integral kernels within the single-nucleon projectile ba-
sis, working both with Jacobi, and SD single-particle co-
ordinate bases. As the spurious c.m. components present
in the SD basis were removed exactly, in both frameworks
the calculated integral kernels are translationally invariant,
and lead to identical results. Several analytical as well as
numerical tests were performed in order to verify the ap-
proach, particularly by benchmarking independent Jacobi-
coordinate and SD calculations for systems with up to 5
nucleons.

Among the applications, we reviewed results for neu-
tron scattering on 3H, 4He and 10Be and proton scattering
on 3,4He, using realistic NN potentials. Our A = 4 scatter-
ing results were compared to earlier ab initio calculations
performed in the framework of the AGS equations, and the
convergence properties of the NCSM/RGM approach with
respect to the adopted model spaces were discussed in de-
tail. For the A = 5 system, we found that all adopted NN
potentials provide a fairly good (in some case excellent)
description of the S -wave phase shifts. On the contrary, the
P-wave phase shifts that we obtained with any of the real-
istic NN potentials present both insufficient magnitude and
splitting with respect to the R-matrix analysis of the data.
Concerning the calculations performed with the N3LO NN
potential, it is anticipated that the inclusion of the NNN
terms of the chiral interaction would lead to an enhanced
spin-orbit splitting, and recover the predictions of the R-
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Fig. 14. Calculated n−12C phase shifts obtained within the
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of Ref. [44] with cutoff Λ = 2.66 fm−1 and HO frequency
!Ω = 24 MeV. The 12C wave functions were obtained within
the importance-truncated NCSM [53,54].

matrix analysis. We also showed that the SRG-N3LO inter-
action presents a larger spin-orbit strength than the N3LO
NN potential itself, and allows a fairly good description
of 4He(n, n)4He angular cross section and analyzing power
for energies far above the low-lying resonances. An impor-
tant aspect of the NCSM/RGM approach is its suitability
for the description of loosely-bound systems, such as the
11Be nucleus. Although we cannot exclude that, e.g. the
NNN force plays a role in the inversion mechanism, we
have demonstrated that a proper treatment of the coupling
to the n -10Be continuum leads to a dramatic decrease of
the energy of the 1

2
+ state, which makes it bound and even

leads to a g.s. parity inversion.
Since the publication of the first results [11,12], the

NSCM/RGM approach has been applied to the description
of nucleon scattering on several p-shell nuclei, such as 7Li,
12C, and 16O (see, e.g., Fig. 14). Key to these calculations,
which will be published in a forthcoming paper [52], are
two factors: (i) the ability of the NCSM/RGM to take ad-
vantage of the powerful second quantization techniques,
while preserving the translational-invariance symmetry of
the system; and (ii) the use of large HO model spaces (large
Nmax values) for the expansion of the clusters internal wave
functions, and hence of the short-range parts of the integra-
tion kernels. The use of the so-called importance-truncated
NCSM [53] for the description of the clusters internal wave
functions is essential in achieving the second of these two
points. This method, first introduced by R. Roth and P.
Navrátil in 2007 for the calculation of ground states, and
now extended to the calculation of excited states [54], al-
lows to reach large HO model spaces for p-shell nuclei
by means of an a-priori selection of the most important
NCSM basis states. Using importance-truncated clusters
wave functions within the NCSM/RGM formalism allows

us to reach for scattering calculations on heavier nuclei the
same level of convergence obtained here for the A = 4 and
A = 5 systems.

The NCSM/RGM formalism has been also extended to
include two-nucleon (deuteron) projectiles, and the inclu-
sion of the three-nucleon (triton and 3He) and four-nucleon
(4He) projectiles are planned ahead. Calculations of deuteron-
nucleus scattering underway. In addition, the coupling of
the single-nucleon and two-nucleon projectile basis will al-
low the first ab initio calculation of the 3H(d, n)4He fusion.

Further, it is possible and desirable to extend the binary-
cluster (A−a, a) NCSM/RGM basis by the standard A-
nucleon NCSM basis to unify the original ab initio NCSM
and NCSM/RGM approaches. This will lead to a much
faster convergence of the many-body calculations compared
to the original approaches and, most importantly, to an
optimal and balanced unified description of both bound
and unbound states. Extensions of the approach to include
three-body cluster channels are also among our future plans,
and the feasibility of such a project is supported by recent
developments on the treatment of both three-body bound
and continuum states (see, e.g., Refs. [21,55–58]).
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53. R. Roth and P. Navrátil, Phys. Rev. Lett. 99, (2007)

092501.
54. R. Roth, Phys. Rev. C 79, (2009) 064324.
55. P. Descouvemont, C. Daniel, and D. Baye, Phys. Rev.

C 67, (2003) 044309.
56. P. Descouvemont, E. Tursunov, and D. Baye, Nucl.

Phys. A765, (2006) 370.
57. M. Theen, D. Baye, and P. Descouvemont, Phys. Rev.

C 74, (2006) 044304.
58. M. Theen, H. Matsumura, M. Orabi, D. Baye, P. De-

scouvemont, Y. Fujiwara, and Y. Suzuki, Phys. Rev. C
76, (2007) 054003.


